Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Area-Wide Program Domain
      • Earth AI & Data
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources and Carbon Management
        • Programs
        • Carbon Removal & Mineralization Program
        • Carbon Storage Program
        • Geothermal Systems
        • Hydrocarbon Science
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
        • National Alliance for Water Innovation (NAWI)
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • Safety
    • EESA Safety
  • FoW
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

Geochemistry 

High Temperature Geochemistry

Te Manaroa hot spring in New Zealand. (Photo credit: Dr. Jen Blank/New Zealand Astrobiology Network).

Our geochemists quantify high temperature, high pressure rock-water-gas interactions. Using these data, they explore the behavior and fate of CO2 injected into deep subsurface formations, geochemical interactions within geothermal systems, and mineral-aqueous fluid interfacial geochemical processes. We have developed geochemical experimental capabilities at extreme temperatures and pressures, beyond conditions characteristic of environmental geochemistry. Our experimental geochemistry capabilities span from the bench-scale to the nanoscale. Lead contact: Nic Spycher.

Reaction Kinetics

  • Crystallographic control of mineral dissolution (K-feldspar, diopside, labradorite, dolomite, etc.)
  • Evolution of crystal habit/morphology with dissolution

 

 

 

 

 

 

 

 

 

 

 

Fluid Chemistry and Fracture Growth

  • Subcritical crack growth using Atomic Force Microscope (AFM)
  • Quartz and soda-lime glass
  • Bending experiments at elevated T, up to 80°C, in deionized water

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phase Partitioning

  • Supercritical CO2-water partitioning experimental data of CH4 and Kr
  • Theoretical model development

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corrosion

  • Time- and temperature-dependence of carbon steel corrosion and formation of potentially protective FeCO3 surface films
  • Passivation and passivation breakdown of alloyed materials (e.g., stainless steels)
  • Application of electrochemical AC and DC methods (electrochemical impedance spectroscopy, cyclic polarization, open circuit potential (OCP) measurements) to study the electrical and ionic properties of thin oxide/hydroxide and carbonate films
  • Equivalent circuit modeling to quantify these properties

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other

  • Deuterium exchanges rates between H2 and H2O
  • High-temperature in-situ pH measurements
  • Amino acid hydrothermal stability on mineral surfaces

People

Patrick F. Dobson
Geothermal Systems Program Lead
Staff Scientist

Kevin Knauss
Affiliate

Eric L. Sonnenthal
Staff Scientist

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • eesawebmaster@lbl.gov
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice