Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources
        • Programs
        • Geologic Carbon Sequestration
        • Hydrocarbon Resources
        • Geothermal Systems
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • COVID & Safety
    • EESA Safety
    • EESA COVID-19
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

DSSS: The Earth is Cleverer than You Are – Learnings in Earth & Seismic Modeling & Applications of FD Modeling to Rock Physics and Geomechanics2 min read

by ESD News and Events on April 9, 2014

Announcements Events
  • Who: JIntro_dsss_stefanioe Stefani, Chevron Energy Technology Co.
  • What:  Download the flyer (pdf)
  • Where: Building 66 Auditorium
  • When: 10:30 am to 12:00 noon, April 11, 2014
  • Why: About the Distinguished Scientist Seminar Series

 

More Information

Joe Stefani received degrees in engineering and geophysics from Cal and Stanford. Since 1984, he has worked for Chevron Energy Technology Company, during which time he has been involved in a range of geophysical R&D, including high fidelity earth and seismic modeling, acquisition, anisotropy, inversion, and general Aki & Richards stuff.  Most recently he has helped to build the SEG SEAM Phase 1 and Phase 2 earth models.

Abstract

Earth modeling, from the construction of subsurface structure and stratigraphy, to the accurate understanding of rock physics, through the simulation of seismic and nonseismic responses, is an enabling technology to guide decisions in acquisition, processing, imaging, inversion and reservoir property inference, for both static and time-lapse understanding. So it is crucial to capture those subsurface elements that most influence the geophysical phenomena we seek to study. This is notoriously difficult, probably because we regularly underestimate how clever the earth can be in producing various geophysical phenomena.

The main part of the talk focuses on methods we have used in building complex earth models (both overburden and reservoirs) and their seismic simulations, emphasizing the challenge to reproduce the appropriate features observed in real data. Questions to consider are the quality of the seismic data that will act as a guide in the model building, and that of the well logs used to quantify the rock physics. Another consideration is the amount of physics to include in the geophysical response simulation, which is a tradeoff between computational load and acceptable characterization of the data features.

Finally, the industry workhorse for seismic modeling continues to be the time-domain finite-difference (FD) algorithm, mainly because of its balance between accuracy and efficiency, simple concept and gridding, and ease of programming on various hardware platforms. Because of this simplicity, and the growing interest in time-lapse and geomechanical problems, a short treatment is included of how FD modeling can be adapted to problems in rock physics and geomechanics from core to basin scales.

News & Events

EESA scientist co-authors new comprehensive guide on ways to remove CO2 from the atmosphere2 min read

January 18, 2021

Berkeley Lab researchers are working on ways to sequester more carbon in soil, including through agricultural practices. (Credit: Berkeley Lab) Scientists say that any serious plan to address climate change should include carbon dioxide removal (CDR) technologies and policies, which makes the newly launched CDR Primer an especially vital resource, says Berkeley Lab scientist Margaret Torn, one…

New EESA research explores impact of land-use policy on California’s terrestrial carbon and greenhouse gas budget3 min read

January 12, 2021

The 28 million acres of natural and working lands across California provide a unique opportunity to meet greenhouse gas emission reduction goals through various land-use strategies, such as expanding urban forest areas or restoring woodlands. However, the need to mitigate wildfire severity is also a critical priority for California, and one that can increase emissions…

Impacts of Climate Change on Our Water and Energy Systems: It’s Complicated5 min read

January 11, 2021

As the planet continues to warm, the twin challenges of diminishing water supply and growing energy demand are intensifying. But because water and energy are inextricably linked, as we try to adapt to one challenge – say, by getting more water via desalination or water recycling – we may be worsening the other challenge by…

New Study: Are Drylands Getting Drier?1 min read

January 5, 2021

EESA visiting postdoctoral fellow Sha Zhou led a recent study exploring why climate models do not project drylands will become substantially drier with climate change as scientists have long believed. A paper published yesterday in the journal Nature Climate Change, “Soil moisture-atmosphere feedbacks mitigate declining water availability in drylands,” describes the importance of long-term changes…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • [email protected]
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice