Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources
        • Programs
        • Geologic Carbon Sequestration
        • Hydrocarbon Resources
        • Geothermal Systems
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • COVID & Safety
    • EESA Safety
    • EESA COVID-19
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

Extreme Rain: Comparing Climate Models1 min read

by ESD News and Events on July 2, 2014

Climate & Carbon Sciences Program Area Climate Sciences Department Research Highlight

Source: Bill Collins and Dan Hawkes

Bill-Collins-PortraitIt is difficult to quantify the cost of extreme-climatic-event impacts on human population, but it is certain that extreme events result in severe damage to property, destruction of environment, and loss of life. The occurrence of extreme rainfall that causes floods and landslides is underestimated in Global Climate Models (GCM), and this bias can affect decisions at both the individual and the community level.

ESD climate scientists Daniele Rosa and Bill Collins (ESD CCS co-head) recently analyzed subdaily precipitation data relative to the Southeastern U.S. from gridded-rain-gauge measurements, conventional global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive, and a multiscale GCM. They found that GCMs overestimate the incidence of middle rainfall events and underestimate the incidence of no, little, and heavy rainfall events. Moreover, GCMs overestimate the persistence of heavy precipitation and underestimate the persistence of no and light precipitation. In general, GCMs with suppression mechanisms in the treatments of convective precipitation compare best with rain-gauge-derived data and should be trusted more than other models when assessing the risk from extreme precipitation events.

Collins_extr_rain_fig1

Figure 1. Observationally derived and simulated (top) fraction of total rainfall and (bottom) 90 v in relation to local time, calculated from data for latitudes (left) 30 to 34ıN and (right) 36 to 40ıN, and longitudes 265 to 280ıE, from May to August, 1996 to 2001

To read more, go to: http://onlinelibrary.wiley.com/doi/10.1002/2013GL057987/full

Citation: Rosa, D., and W.D. Collins (2013), A case study of subdaily simulated and observed continental convective precipitation: CMIP5 and multiscale global climate models comparison. Geophys. Res. Letters, 40 (22), 5999-6003; DOI: 10.1002/2013GL057987.

Funding: NSF

News & Events

EGD Postdoc Fellow Receives Young Researcher Presenter Award1 min read

January 21, 2021

Pramod Bhuvankar, an EGD postdoctoral fellow working with research scientist Abdullah Cihan, received a Young Researcher Presenter Award during the 2020 Computational Methods in Water Resources conference in December. His presentation, “Pore-scale simulations of permeability decline in porous media due to fines migration,” described a pore-scale CFD study of clay mobilization in porous media due…

Berkeley Lab Partners with International Collaborators in Geothermal Energy Research1 min read

January 20, 2021

  Scientists from the Energy Geosciences Division have begun working with European partners on three new geothermal research projects through the Department of Energy’s membership in GEOTHERMICA, a transnational consortium that combines the in-country financial resources and research expertise of 15 participating countries to demonstrate and validate novel concepts in geothermal energy use. This marks the…

EESA Senior Scientist Talks Earthquake Building Resilience1 min read

Berkeley Lab senior scientist David McCallen leads a subproject called Earthquake Sim, or EQSIM, for the DOE’s Energy Exascale Computing Project. He is also professor and director of the Center for Civil Engineering Earthquake Research in the Department of Civil and Environmental Engineering at the University of Nevada, Reno. McCallen recently spoke with Scott Gibson of…

EESA Scientist Coauthors New Comprehensive Guide on Removing CO2 from the Atmosphere2 min read

January 18, 2021

Berkeley Lab researchers are working on ways to sequester more carbon in soil, including through agricultural practices. (Credit: Berkeley Lab) Scientists say that any serious plan to address climate change should include carbon dioxide removal (CDR) technologies and policies, which makes the newly launched CDR Primer an especially vital resource, says Berkeley Lab scientist Margaret Torn, one…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • [email protected]
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice