Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Area-Wide Program Domain
      • Earth AI & Data
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources and Carbon Management
        • Programs
        • Carbon Removal & Mineralization Program
        • Carbon Storage Program
        • Geothermal Systems
        • Hydrocarbon Science
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
        • National Alliance for Water Innovation (NAWI)
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • Safety
    • EESA Safety
  • FoW
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

Rock Dynamics and Imaging Lab

Core Capabilities
People

NGEE-Arctic-CT-Lab-Kneafsey

The Earth & Environmental Sciences Area’s Rock Dynamics and Imaging Laboratory has capabilities to make measurements on rock, fractured rock, and soil samples over a wide range of temperature and pressure conditions needed to understand mechanical and hydrologic processes. Many studies can also be performed with concurrent X-ray computed tomography (CT) imaging, allowing not only a means of process visualization, but also another means of quantification of processes.

In these laboratories, we study processes that occur under conditions applicable to geothermal systems, carbon dioxide sequestration reservoirs, conventional oil and gas reservoirs, caprocks, unconventional oil and gas systems such as coalbed methane, gas hydrate-bearing systems, and tight hydrocarbons (shales and tight sandstones).

SCCO2 Flow. Bright regions show supercritical CO2 saturation in a fractured sandstone. The CO2 flow was distributed between the narrow fracture and the sandstone matrix.

SCCO2 Flow. Bright regions show supercritical CO2 saturation in a fractured sandstone. The CO2 flow was distributed between the narrow fracture and the sandstone matrix.

X-ray CT cross sections through arctic core

Series of X-ray CT cross sections through an arctic core with the top being in the active layer and the bottom in the permafrost.

X-ray CT cross section of an arctic core

 

 

 

 

 

 

 

 

 

We use many tools in making our measurements. Hydrologic measurements are typically made applying flow of various fluids of interest through a rock core under specified chemical, saturation, pressure, and temperature conditions and measuring the resulting pressures, temperatures, and saturations. Large-capacity high-pressure syringe pumps are used to control the flow, and the needed pressure, differential pressure, and temperature sensors are appropriately distributed both outside and inside the system. Often, CT can be used to observe the spatial and temporal saturation distributions. (Image at far left: Vertical X-ray CT cross section of an arctic core with the top being in the active layer and bottom in the permafrost.)

A variety of geophysical measurements can be made as well, both independently of the hydrologic and CT measurements, or simultaneously. We can measure the effects of changing fluid saturation and saturation distribution, as well as changing rock structure using seismic compressional (P) and shear (S) wave transmission velocities at frequencies ranging from hundreds of Hz to MHz, and are developing techniques to make measurements at lower frequencies more akin to those typically used in the field. In addition to seismic wave speeds, our high-pressure low-frequency Split Hopkinson Resonant Bar Apparatus allows us to examine wave attenuation. This technique provides additional insights on fluid distribution within a sample. We can also measure electrical resistivity of samples undergoing a variety of processes to gain insight to fluid distribution and permeability.

Split Hopkinson Resonant Bar Apparatus for high pressure low frequency measurements.
X-ray transparent triaxial test vessel.

X-ray CT cross section of a fractured granite core used in a slip-shear test.
X-ray CT cross section of a layered sand sample showing location of resistivity probes and thermocouples.

Low-density shear bands observed in failing methane-hydrate bearing subjected to triaxial stress.

Contact Us
  • Seiji Nakagawa, Labspace Lead PI and Lab Contact, SNakagawa@lbl.gov, (510) 486-7894

Sharon E. Borglin

Principal Scientific Research Associate

seborglin@lbl.gov

Tim Kneafsey

Affiliate Scientist (Retired)

Phone: 510-486-4414
Fax: 510-486-5686
tjkneafsey@lbl.gov

Seiji Nakagawa

Staff Scientist

Phone: 510-486-7894
Fax: 510-486-5686
snakagawa@lbl.gov

Facility Contacts

Seiji Nakagawa
Staff Scientist

Tim Kneafsey
Affiliate Scientist (Retired)

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • eesawebmaster@lbl.gov
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice