Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Area-Wide Program Domain
      • Earth AI & Data
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources and Carbon Management
        • Programs
        • Carbon Removal & Mineralization Program
        • Carbon Storage Program
        • Geothermal Systems
        • Hydrocarbon Science
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
        • National Alliance for Water Innovation (NAWI)
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • Safety
    • EESA Safety
  • FoW
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

Good IDEAS on Virtual Terrestrial Ecosystems3 min read

by ESD News and Events on April 17, 2015

Climate Sciences Department Ecology Department Environmental Remediation & Water Resources Program Geochemistry Department Research Highlight Terrestrial Ecosystem Science Program

Sources: Dan Hawkes, Carl Steefel

Goodideas_3_blogIn a report published earlier this year (February 2015) by the DOE Office of Science, covering a workshop convened this past year, ESD’s Carl Steefel, Eoin Brodie, and Charlie Koven, among others, collectively sought ways of applying new scientific computing capabilities to studies of Earth’s subsurface.  One of the results of this workshop (and others) was Interoperable Design of Extreme-Scale Application Software (IDEAS), a recently initiated project co-funded by the Advanced Scientific Computing Research (ASCR) program and Office of Biological and Environmental Research (BER) within the Office of Science.

This project will proceed in concert with, and support, a number of flagship programs within BER, including ESD’s SFA 2.0 Genomes-to-Watershed, Next Generation Ecosystem Experiment (NGEE)-Arctic and NGEE-Tropics programs. These programs have the goal of developing a predictive understanding of the complex ecosystems under study in each of those programs. To achieve the desired level of predictive understanding, a new generation of multiscale, multiphysics models is needed for terrestrial systems—models that incorporate process couplings and feedbacks between various “pools” (i.e., vegetation, soils, subsurface aquifers, and surface waters) across wide ranges of spatial and temporal scales.

Fig6_goodideasThis is a formidable task. Terrestrial systems are inherently multiscale, involve more processes than traditional multiphysics applications, and have significant uncertainty in process representation and coupling at different scales. Moreover, the scientific software community is facing the confluence of disruptive changes in computing architectures and new opportunities for greatly improved simulation capabilities. New architectures, while demanding fundamental algorithm and software refactoring, are at the same time enabling new multiscale and multiphysics modeling, simulation, and analysis.

Both Genomes-to-Watershed and NGEE projects seek to take advantage of these new scientific software capabilities by incorporating IDEAS. IDEAS pursues the development and demonstration of new approaches for producing, using, and supporting scientific software. It will establish methodologies and tools that facilitate delivery of software as reusable, interoperable components. Software lifecycle models will be developed that are both flexible and rigorous.

Specifically for the Genomes-to-Watershed Project, Phase I of which is an intensive study of the Colorado River watershed near Rifle, Colorado, IDEAS will provide fundamental simulation of biogeochemical cycling within the East River Watershed. The objective of this work, over the next three years, will be a better understanding of aquifer redox status and climate impacts on watershed carbon and nitrogen cycling—through higher fidelity, multiscale models simulated at high spatial resolution.

Fig12_goodideasSpecifically for NGEE-Arctic, IDEAS will provide the foundation for multiscale, multiphysics simulations of warming tundra in the Barrow, Alaska, region. The objective of this work, over the next three years, will be to determine (through high-resolution simulation of domains extending over 10 km) how dynamic microtopography caused by thawing permafrost alters the hydrologic and carbon cycles of Arctic lowland tundra.

With IDEAS, BER envisions a software ecosystem of interoperable components to increase both software development and scientific productivity across its portfolio of projects that depend on modeling. 

To read more about IDEAS, view the pdf here

To access the report on the DOE workshop that spawned IDEAS, Building Virtual Ecosystems: Computational Challenges for Mechanistic Modeling of Terrestrial Environments, go here: http://doesbr.org/BuildingVirtualEcosystems/

Citation:

U.S. DOE (including C.I. Steefel, E.L. Brodie, and C.D. Koven) (2015), Building Virtual Ecosystems: Computational Challenges for Mechanistic Modeling of Terrestrial Environments: Workshop Report. DOE/SC-0171. U.S. Department of Energy Office of Science.

News & Events

Former Intern Emily Nagamoto Wins AGU Award1 min read

March 27, 2023

Former Science Undergraduate Laboratory Intern (SULI) Emily Nagamoto received an American Geophysical Union (AGU) Outstanding Presentation Award, which honors exceptional presentations given during AGU’s 2022 Fall meeting. She was mentored by Staff Scientist Charuleka Varadharajan and Postdoctoral Research Fellow Mohammed Ombadi during her Summer 2022 SULI term. Currently an undergraduate student in Duke University’s Nicholas…

EESA Scientists Investigate How Tropical Soil Microbes Might Respond to Future Droughts2 min read

March 14, 2023

As the most biologically diverse terrestrial ecosystems on Earth, tropical rainforests are just as critical to sustaining environmental and human systems as they are beautiful. Their unique climate with high temperatures, humidity, and precipitation promotes high primary productivity, which offsets high respiration, resulting in these ecosystems being one of the largest carbon sinks on Earth,…

Doubling Protected Lands for Biodiversity Could Require Tradeoffs With Other Land Uses, Study Finds4 min read

March 3, 2023

This article first appeared on lbl.gov. Scientists show how 30% protected land targets may not safeguard biodiversity hotspots and may negatively affect other sectors – and how data and analysis can support effective conservation and land use planning Although more than half the world’s countries have committed to protecting at least 30% of land and oceans…

Six Berkeley Lab Scientists Named AAAS Fellows6 min read

This article first appeared at lbl.gov Six researchers have been elected into the 2022 class of the American Association for the Advancement of Science The American Association for the Advancement of Science (AAAS) has announced their 2022 Fellows, including six scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This lifetime honor, which follows…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • eesawebmaster@lbl.gov
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice