Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Area-Wide Program Domain
      • Earth AI & Data
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources and Carbon Management
        • Programs
        • Carbon Removal & Mineralization Program
        • Carbon Storage Program
        • Geothermal Systems
        • Hydrocarbon Science
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
        • National Alliance for Water Innovation (NAWI)
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • Safety
    • EESA Safety
  • FoW
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

Microbial Response to a Changing and Fire-Prone Arctic Ecosystem2 min read

by Julie Bobyock on April 27, 2022

Climate and Ecosystem Sciences Division

2007. Anaktuvuk River Fire, North Slope, Alaska. Photo credit: Alaska Fire Service.

Burning more than 1,000 square kilometers of tundra on Alaska’s North Slope, the 2007 Anaktuvuk river wildfire is one of the largest fires to occur within Arctic ecosystems. Berkeley Lab scientist Nick Bouskill led a study that used data from this disturbance event to predict ecosystem recovery as fires advance in a changing climate. (Credit: Bureau of Land Management)

Greenhouse gas emissions from human activities have caused Earth’s climate to change – and in Arctic regions, air temperatures are warming twice as fast as the global average. Permanently frozen Arctic soils located in tundra ecosystems store approximately twice the amount of carbon currently in the atmosphere. This frozen organic matter is thawing, thus increasing microbial decomposition, which releases carbon dioxide to the atmosphere. Arctic climate change can also lead to more droughts, lower air moisture, and more lightning – all factors that can increase the frequency and intensity of wildfires.

A recent study led by Berkeley Lab scientist Nick Bouskill sought to improve what is known about how these Arctic systems respond to wildfire. The Next Generation Ecosystem Experiments (NGEE) Arctic  project team used environmental modeling to evaluate how these environments recover from wildfires, and how nutrients available in these permafrost soils influence this recovery. Their work showed that over the first five years after the fire, faster-growing bacteria established colonies in areas of the soil that were previously occupied by slower-growing fungi. The study is described in a new paper published in the journal, Communications Earth and Environment.

Bouskill explained, “The onset of wildfire leads to the combustion and loss of carbon from soil and vegetation and the export of soil nutrients to waterways.” Thus, fires are a disturbance to the microbial community because they impact soil conditions. Microbial response to these wildfires can impact soil nutrient cycling, which can influence larger-scale ecosystem recovery.

Using a mathematical ecosystem model, the team simulated how soil carbon and nutrient cycles respond to wildfires in a changing climate, for example with increased temperature and atmospheric carbon dioxide. The model was applied to observations from the 2007 Anaktuvak river fire – one of the largest and most sampled wildfires within Arctic regions. Because of the demonstrated enhanced microbial growth and activity, more nutrients were released into the soil – which allows for better soil quality, and therefore faster recovery of soil carbon and plant communities. These post-fire conditions also encouraged shrubs to grow more rapidly than under warming conditions alone.

The model simulations show that soil nutrients released from microbial activity influence how tundra ecosystems recover from fires. This study advances predictions of how microbes and soil quality may change and respond to a rapidly warming and fire-prone Arctic environment.

NGEE Arctic is supported by the Department of Energy’s Office of Science.

News & Events

EESA Scientists Investigate How Tropical Soil Microbes Might Respond to Future Droughts2 min read

March 14, 2023

As the most biologically diverse terrestrial ecosystems on Earth, tropical rainforests are just as critical to sustaining environmental and human systems as they are beautiful. Their unique climate with high temperatures, humidity, and precipitation promotes high primary productivity, which offsets high respiration, resulting in these ecosystems being one of the largest carbon sinks on Earth,…

Doubling Protected Lands for Biodiversity Could Require Tradeoffs With Other Land Uses, Study Finds4 min read

March 3, 2023

This article first appeared on lbl.gov. Scientists show how 30% protected land targets may not safeguard biodiversity hotspots and may negatively affect other sectors – and how data and analysis can support effective conservation and land use planning Although more than half the world’s countries have committed to protecting at least 30% of land and oceans…

Six Berkeley Lab Scientists Named AAAS Fellows6 min read

This article first appeared at lbl.gov Six researchers have been elected into the 2022 class of the American Association for the Advancement of Science The American Association for the Advancement of Science (AAAS) has announced their 2022 Fellows, including six scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This lifetime honor, which follows…

Kenichi Soga named to National Academy of Engineers1 min read

February 23, 2023

Faculty scientist Kenichi Soga was named to the National Academy of Engineering (NA), one of the highest honors that can be achieved as an American engineer. Soga is the Donald H. McLaughlin Chair in Mineral Engineering and a Chancellor’s Professor at the University of California, Berkeley, and has conducted groundbreaking research from infrastructure sensing to…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • eesawebmaster@lbl.gov
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice