Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Strategic Vision 2025
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
  • Research
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources
        • Programs
        • Geologic Carbon Sequestration
        • Hydrocarbon Resources
        • Geothermal Systems
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
    • Projects
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
  • Intranet
  • Safety
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

Plants Really Do Feed Their Friends

by Christina Procopiou on March 22, 2018

Ecology Department Ecosystems Biology Program Fundamental Earth Sciences GC-Microbial Engines Initiative Publication Research Highlight

 

Microbes that flourish in the area around plant roots take up specific organic acids from the root exudates. (Credit: Javier Ceja-Navarro)

Researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley have discovered that as plants develop they craft their root microbiome, favoring microbes that consume very specific metabolites. Their study could help scientists identify ways to enhance the soil microbiome for improved carbon storage and plant productivity.

“For more than a century, it’s been known that plants influence the makeup of their soil microbiome, in part through the release of metabolites into the soil surrounding their roots,” said Berkeley Lab postdoctoral researcher Kateryna Zhalnina, the study’s lead author. “Until now, however, it was not understood whether the contents of this cocktail released by plants was matched by the feeding preferences of soil microbes in a way that would allow plants to guide the development of their external microbiome.”

The study, “Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly,” has just been published in the journal Nature Microbiology. The corresponding authors were Berkeley Lab scientists Trent Northen and Eoin Brodie. Brodie is deputy director of the Climate and Ecosystem Sciences Division within Earth and Environmental Sciences. He co-leads the Lab-wide Microbes to Biomes initiative.

Microbes within soil improve the ability of plants to absorb nutrients and resist drought, disease, and pests. They mediate soil carbon conversion, affecting the amount of carbon stored in soil or released into the atmosphere as carbon dioxide. The relevance of these functions to agriculture and climate are being observed like never before.

Just one gram of soil contains tens of thousands of microbial species. Scientists have long known that plants impact the composition of the soil microbiome in the area surrounding their roots by sending out chemicals (metabolites). Prior work by Mary Firestone, Berkeley Lab faculty scientist and a professor of microbiology at UC Berkeley, had shown that plants were consistently selecting or suppressing the same types of microbes over time in the root zone, suggesting some form of synchronization between plant and microbiome development.

 

Yet, little research had gone into the relationship between specific metabolites that plants release and the microbes consuming them. The new study brought together experts in soil science, microbial and plant genomics, and metabolomics to explore these potential metabolic connections. Their study took a close look at the rhizosphere of an annual grass (Avena barbata) common in California and other Mediterranean ecosystems.

The Berkeley Lab team felt the time was ripe for doing so. As pressure mounts for farmers to grow enough healthy crops to meet a burgeoning population’s needs, and for new land management strategies that improve soil carbon storage to reduce atmospheric CO2 and produce healthy soils, the soil microbiome is the subject of more in-depth scientific research than ever before.

The researchers set out to determine the relationship between microbes that consistently bloomed near the grass roots and the metabolites released by the plant. Their first step was to collect soil from the University of California’s Hopland Research and Extension Center in northern California. Brodie, deputy director of Berkeley Lab’s Climate and Ecosystem Sciences Division, and his group used what they knew about the lifestyles of these soil bacteria to develop specialized microbial growth media to cultivate hundreds of different bacterial species. They then selected a subset that either flourished or declined as roots grew through the soil.

This collection of microbes was then sent to the Joint Genome Institute (JGI), a DOE Office of Science User Facility, where their genomes were sequenced to provide clues as to why their responses to roots differed. This analysis suggested that the key to success for microbes that thrived in the rhizosphere was their diet.

Rhizosphere soil for microbial isolations was collected from the Little Buck watershed at the University of California Hopland Research and Extension Center in an area in which Avena barbata are the dominant vegetation. (Credit: Heejung Cho)

Northen, senior scientist in Berkeley Lab’s Environmental Genomics and System Biology Division, is fascinated by the chemistry of microbiomes, and his group has developed advanced mass spectrometry-based exometabolomic approaches to elucidate metabolic interactions between organisms. Zhalnina and Northen combined their expertise to identify what the more successful microbes surrounding the roots of the Avena grasses preferred to eat.

Using a hydroponic setup at the JGI, they immersed plants at different developmental stages in water to stimulate them to exude their metabolites, then measured the metabolites being released by the plants using mass spectrometry. Subsequently, the cultivated soil microbes were fed a cocktail of root metabolites, and the researchers used mass spectrometry to determine which microbes preferred which metabolites.

They found that the microbes that flourished in the area around plant roots preferred a diet more rich in organic acids than the less successful microbes in the community.

“Early in its growth cycle, the plant is putting out a lot of sugars, ‘candy’, which we find many of the microbes like,” Northen said. “As the plant matures, it releases a more diverse mixture of metabolites, including phenolic acids. What we discovered is that the microbes that become more abundant in the rhizosphere are those that can use these aromatic metabolites.”

Brodie describes these phenolic acids as very specific compounds released by plants throughout their development. Phenolic acids are often associated with plant defenses or plant-microbe communication. This indicates to Brodie that as they establish the microbial community within the rhizosphere, plants could be exuding metabolites like phenolic acids to help them control the types of microbes thriving around their roots.

“We’ve thought for a long time that plants are establishing the rhizosphere best suited to their growth and development,” said Brodie. “Because there are so many different types of microbes in soil, if the plants release just any chemical it could be detrimental to their health.

“By controlling the types of microbes that thrive around their roots, plants could be trying to protect themselves from less friendly pathogens while promoting other microbes that stimulate nutrient supply.

Zhalnina, Firestone, Northen, and Brodie believe their findings have great potential to influence additional scientific and applied research. Zhalnina points out that a lot of research and development is currently underway by government and industry to harness the power of microbes that improve plant yield and quality of soil to help meet society’s growing demands for a sustainable food supply.

She said, “It’s exciting that we can potentially use the plant’s own chemistry to help nourish beneficial microbes within soil. Population growth, especially, has created a demand for identifying more reliable ways to manipulate the soil microbiome for beneficial outcome.”

Other current or former Berkeley Lab scientists contributing to this studying were: Katherine Louie, Nasim Mansoori, Dominique Loqué, Benjamin Bowen, Zhao Hao, Ulisses Nunes da Rocha, and Ulas Karaoz; Shengjing Shi and Heejung Cho of UC Berkeley were also co-authors. The DOE Office of Science supported the research. This work was done in part through the JGI Community Science Program.

News & Events

Carl Steefel Named 2019 American Geophysical Union Fellow

August 14, 2019

  Carl Steefel, a senior scientist in the Earth & Environmental Sciences Area at Berkeley Lab, has been named by the American Geophysical Union (AGU) as a 2019 AGU Fellow. Every year, the AGU Fellows program recognizes members who have made exceptional contributions to the Earth and Space sciences. Vetted by a committee of AGU Fellows,…

Climate Change Expected to Shift Location of East Asian Monsoons

November 25, 2019

Berkeley Lab climate scientists studied how the Hadley cell, a tropical air flow closely linked to monsoons, will change as the climate warms. (Credit: iStockphoto) More than a billion people in Asia depend on seasonal monsoons for their water needs. The Asian monsoon is closely linked to a planetary-scale tropical air flow which, according to a…

Charlie Koven Named One of 2019’s Most Influential Researchers

November 23, 2019

For the second consecutive year, Charlie Koven, a staff scientist in the Climate and Ecosystem Sciences Division, has been named among the world’s most cited research scientists. Since 2002, the Highly Cited Researchers list has identified global research scientists and social scientists who have demonstrated exceptional influence – reflected through their publication of multiple papers…

EGD Hosts Symposium on Coupled Processes in Radioactive Waste Disposal and Subsurface Engineering Applications

On November 4-5, 2019, the Environmental Geosciences Division co-hosted the DECOVALEX 2019 Symposium on “Coupled Processes in Radioactive Waste Disposal and Subsurface Engineering Applications” in Brugg, Switzerland. Coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems are critically important to the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel. Understanding…

Romy Chakraborty and Boris Faybishenko Honored with 2019 Directors’ Awards

Two EESA scientists were honored with Berkeley Lab Director’s Awards at a ceremony on November 15 in Building 50. Romy Chakraborty, Ecology Department head, and EESA Staff Scientist Boris Faybishenko, are among 15 individuals who received this year’s awards from Lab Director Mike Witherell. The Director’s Awards program recognizes Lab employees each year for exemplary…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • [email protected]
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice