Geothermal Systems
Innovative technologies to identify and characterize conventional hydrothermal systems and enhanced geothermal systems
The Geothermal Systems Program is focused on two research thrusts:
1. Developing innovative technologies for identifying and characterizing conventional and hidden natural hydrothermal systems
Typically, “hidden” hydrothermal systems are deep, fault-hosted circulating systems in which surface manifestations have either been modified (obscuring deeper high temperatures) or are nonexistent. Our main research avenues in this thrust include: chemical geothermometry through multicomponent analysis; subsurface characterization using joint inversion of coupled geophysical attributes; locating and mapping surface fluid flux; and play fairway analysis of prospective geothermal regions to identify geothermal systems and better constrain resource potential.
2. Characterizing, developing, and sustaining enhanced geothermal systems through the use of coupled process models, microearthquake (MEQ) monitoring, and laboratory studies
In this thrust we are developing approaches to implement, monitor, and model enhanced geothermal systems (EGS), where hot rock permeability is artificially created or enhanced through hydraulic, thermal, and/or chemical stimulation. Berkeley Lab has played a major role in coupled process modeling and induced seismicity monitoring of several DOE-EGS demonstration projects. The EGS Collab project is designed to test novel modeling, characterization, monitoring, and stimulation methods at intermediate field scales–methods which can be applied at DOE’s Frontier Observatory for Geothermal Energy (FORGE).
In addition, the Berkeley Lab’s Geothermal Program has recently diversified to include a wider range of research and development activities, including direct use applications such as brine desalination, mineral recovery, district heating and cooling, and thermal-reservoir energy storage. The expertise gained over decades of experience in our geothermal program is applicable to emerging science areas such as EESA’s research into subsurface urban geo-systems.
Learn more about the Geothermal Systems Program here.
Photo Credit: Pat Dobson
RECENT Science Advances
Developed EGS Collab test bed at the Sanford Underground Research Facility (SURF) laboratory to address fundamental challenges in understanding the relationship between permeability creation, induced seismicity, and heat transfer in crystalline rocks under relevant stress and temperature conditions for EGS through a combination of highly monitored fracture stimulation and flow experiments, and coupled process modeling
Utilization of ‘dark fiber’ networks as a tool for geothermal exploration that allows monitoring seismicity and shallow thermal anomalies using distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) in the Imperial Valley
Applied Thermal-Hydrological-Mechanical (THM) modeling to assess potential impacts of flexible geothermal production on well integrity
Use of Play Fairway Analysis for exploration of geothermal systems
Development of new modeling capabilities such as:
coupled process modeling for supercritical geothermal systems, and to evaluate viability of reservoir thermal energy storage
coupled building (Modelica) and subsurface (TOUGH, COMSOL) models for community geothermal applications
joint geophysical inversion methods for improved subsurface image resolution
Partners
EESA benefits from rich partnerships with our collaborators and sponsors. See project & program links above for more information.
Relevant Projects
Publication Highlights
Creation of a mixed-mode fracture network at meso-scale through hydraulic fracturing and shear stimulation. Submitted to Journal of Geophysical Research-Solid Earth, 2020
Analysis of curtailment at The Geysers geothermal Field, California. Geothermics, 2020
Joint opening or hydroshearing? Analyzing a fracture zone stimulation at Fenton Hill. Geothermics, 2019
How to sustain a CO2-thermosiphon in a partially saturated geothermal reservoir: Lessons learned from field experiment and numerical modeling. Geothermics, 2018
Influence of injection-induced cooling on deviatoric stress and shear reactivation of preexisting fractures in Enhanced Geothermal Systems. Geothermics, 2017
Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau region. Geothermics, 2017
Utilizing supercritical geothermal systems: a review of past ventures and ongoing research activities. Geothermal Energy, 2017
Regional crustal-scale structures as conduits for deep geothermal upflow. Geothermics, 2016
The Northwest Geysers EGS Demonstration Project, California: Pre-stimulation Modeling and Interpretation of the Stimulation. Mathematical Geosciences, 2015
Resistivity characterization of the Krafla and Hengill geothermal fields through 3D MT inverse modeling. Geothermics, 2015
Media Coverage
Geothermal Brines Could Propel California’s Green Economy
Berkeley Lab To Partner with International Collaborators in Geothermal Energy Research
Berkeley Lab to Lead Multimillion Geothermal Energy Project
Tool Created at GMF Enables Unprecedented Look at Subsurface Rock Fractures
Berkeley Lab Scientists Study Rock Fracture in Connection with Enhanced Geothermal Systemss
Mack Kennedy Receives Geothermal Special Achievement Award
Cross-Border Collaborations in Geothermal Energy Research
A U.S. Department of Energy National Laboratory Managed by the University of California
Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice