Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources
        • Programs
        • Geologic Carbon Sequestration
        • Hydrocarbon Resources
        • Geothermal Systems
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • COVID & Safety
    • EESA Safety
    • EESA COVID-19
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

Using SFA 2.0 case studies and ASCEM tools and methods to aid international remediation efforts for uranium mining sites1 min read

by Marilyn Saarni on August 16, 2015

Announcements Environmental and Biological Systems Sciences Program Area Environmental Remediation & Water Resources Program Nuclear Energy & Waste Program

At IAEA headquarters in Vienna, Austria, Boris Faybishenko (Earth & Environmental Sciences, LBNL) participated in a July 2015 workshop on preparation of an IAEA Technical Report on Remediation of Groundwater and Acid and Metalliferous Drainage (AMD) at Uranium Mining Sites. Boris, who is an IAEA Technical Expert, and colleagues from Australia, Canada, USA and Czech Republic, will be preparing this report over the next two years. At Boris’ suggestion, the working group plans to incorporate the lessons learned and tools developed through—

  • Sustainable Systems SFA2.0 (supported by DOE BER)
  • ASCEM—Advanced Simulation Capability for Environmental Management (supported by DOE EM)

This report will provide guidance to more than 100 countries, many working with limited resources, on how to address their challenges in remediating contaminated groundwater from uranium mining sites.

DOE-BER’s Sustainable Systems 2.0 offers the international community several use case studies on:

  • Bioremediation of uranium-contaminated groundwater at Rifle, CO
  • Development of a Data Management and Assimilation (DMA) System to enable integration, synthesis and quality control for diverse and disparate data sets.

DOE-EM’s ASCEM project can provide tools—

  • Numerical simulation codes, including software AMANZI, and visualization, data management (quality control and standardization) capabilities
  • Models and monitoring methods derived from the experience of the Site Application Working Group, such as attenuation-based remedies at the Savannah River Site F Area and evaluation of remediation and natural attenuation approaches for uranium-contaminated groundwater

These lessons learned and tools are available to the international community, where they can be leveraged to address not only remediation of past contamination, but also to accidents large and small. At the same time, the data-rich uranium mining community will take advantage of opportunities to test ASCEM capabilities on complex remediation problems.

Source: Boris Faybishenko

News & Events

New EESA research explores impact of land-use policy on California’s terrestrial carbon and greenhouse gas budget3 min read

January 12, 2021

The 28 million acres of natural and working lands across California provide a unique opportunity to meet greenhouse gas emission reduction goals through various land-use strategies, such as expanding urban forest areas or restoring woodlands. However, the need to mitigate wildfire severity is also a critical priority for California, and one that can increase emissions…

Impacts of Climate Change on Our Water and Energy Systems: It’s Complicated5 min read

January 11, 2021

As the planet continues to warm, the twin challenges of diminishing water supply and growing energy demand are intensifying. But because water and energy are inextricably linked, as we try to adapt to one challenge – say, by getting more water via desalination or water recycling – we may be worsening the other challenge by…

New Study: Are Drylands Getting Drier?1 min read

January 5, 2021

EESA visiting postdoctoral fellow Sha Zhou led a recent study exploring why climate models do not project drylands will become substantially drier with climate change as scientists have long believed. A paper published yesterday in the journal Nature Climate Change, “Soil moisture-atmosphere feedbacks mitigate declining water availability in drylands,” describes the importance of long-term changes…

Stunning Visuals Tell a Fluid Story of Water in the Upper Gunnison River Basin1 min read

December 23, 2020

As part of a DOE Science Undergraduate Laboratory Internship (SULI), Jeremy Snyder authored “Rocky Mountain Water: The stories of Natural, Impacted, and Managed water in the Upper Gunnison River Basin”. Using the ArcGIS StoryMaps platform and stunning visuals, the story focuses on the Colorado Upper Gunnison River Basin—home to the Watershed Function SFA’s study site, the…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • [email protected]
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice