Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Area-Wide Program Domain
      • Earth AI & Data
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources and Carbon Management
        • Programs
        • Carbon Removal & Mineralization Program
        • Carbon Storage Program
        • Geothermal Systems
        • Hydrocarbon Science
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
        • National Alliance for Water Innovation (NAWI)
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • Safety
    • EESA Safety
  • FoW
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

Which processes most strongly govern terrestrial carbon cycle feedbacks in Earth system models?2 min read

by Marilyn Saarni on October 12, 2015

Announcements Climate & Carbon Sciences Program Climate & Carbon Sciences Program Area Climate and Ecosystem Sciences Division Climate Sciences Department In The Press Publication Research Highlight
Graphic comparing various turnover times for carbon in vegetation and soil carbon pools.

Graphic comparing various turnover times for carbon in vegetation and soil carbon pools.

ESMs (Earth system models) are crucial in estimating climate sensitivity, but show large uncertainty in carbon cycle feedbacks. A key step of reducing this uncertainty is to identify the processes that govern carbon-climate and carbon-concentration feedbacks driven by changes in terrestrial carbon stocks. Are these changing carbon stocks driven by changes to inputs, or changes to output in C pools? And do these changes mostly occur in live vegetation, or in dead soil carbon pools?

Charles Koven, with team members Jeff Chambers, Katerina Georgiou, Ryan Knox, Robinson Negron-Juarez, Bill Riley (all EESA-LBNL researchers), and Vivek Arora (Canadian Centre for Climate Modelling and Analysis), Victor Brovkin (Max Planck Institute for Meteorology, Germany), Pierre Friedlingstein (University of Exeter), and Chris Jones, Met Office Hadley Centre Climate Science and Service, Exeter, developed a theoretical framework for separating these controls, and applied it to the CMIP5 models. They found that for the CMIP5 ESMs, initial condition uncertainty is driven by uncertainty in turnover times, whereas transient uncertainty is driven by changes to productivity. These patterns hold for both live and dead ecosystem components. This points to the need to determine in greater detail the processes that control turnover times of both vegetation and soil carbon pools, and to discern whether these processes are adequately represented in the models.

Primary support: Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy, as part of their Regional and Global Climate Modeling Program.

Citation: C. D. Koven, J. Q. Chambers, K. Georgiou, R. Knox, R. I. Negron-Juarez, W. J. Riley, V. Arora, V. Brovkin, P. Friedlingstein, and C. D. Jones. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models. Biogeosciences 12: 5211-5228, 2015. doi:10.5194/bg-12-5211-2015. Published September 7, 2015.

News & Events

Daniel Stolper Selected by DOE’s Early Career Research Program2 min read

June 22, 2022

Daniel Stolper is among five Berkeley Lab researchers to receive funding through the Department of Energy’s Early Career Research Program (ECRP), and is one of just 83 nationwide to be selected this year by the DOE for this prestigious award. Stolper is an EESA faculty scientist with a joint appointment at UC Berkeley, where he…

Wageningen Students Visit Ecology Department Team2 min read

On May 31, a delegation of students from Wageningen University & Research Center (WUR) Microbiology and Systems Biology Groups in the Netherlands came to visit EESA’s Ecology department. WUR is a highly esteemed world-class Dutch university that trains specialists in a variety of life sciences disciplines. WUR’s research and teaching activities range from sustainable agriculture…

Strengthening Wildland Fire Science and Scientific Collaboration through New Data Management Platform3 min read

June 13, 2022

  Wildfires are increasing in severity and frequency worldwide. A new report called Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires indicates that wildfires are responsible for significant economic, environmental, and sociopolitical damage (UNEP, GRID-Arendal, 2021). They also contribute significantly to greenhouse gas emissions – thereby further fueling climate change.  Researchers need to…

Bhavna Arora Describes Agricultural Managed Aquifer Recharge5 min read

June 7, 2022

Managed Aquifer Recharge is a water management strategy used to store excess surface water underground and thereby replenish groundwater basins when and where possible. This strategy enables communities to use depleted groundwater basins as natural water storage to augment water supplies and prevent land subsidence. In coastal regions, MAR can be implemented to act as…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • eesawebmaster@lbl.gov
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice