Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Area-Wide Program Domain
      • Earth AI & Data
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources and Carbon Management
        • Programs
        • Carbon Removal & Mineralization Program
        • Carbon Storage Program
        • Geothermal Systems
        • Hydrocarbon Science
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
        • National Alliance for Water Innovation (NAWI)
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • Safety
    • EESA Safety
  • FoW
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

Doubling Protected Lands for Biodiversity Could Require Tradeoffs With Other Land Uses, Study Finds4 min read

by Lauren Nicole Core on March 3, 2023

Climate and Ecosystem Sciences Division

This article first appeared on lbl.gov.

Scientists show how 30% protected land targets may not safeguard biodiversity hotspots and may negatively affect other sectors – and how data and analysis can support effective conservation and land use planning


(Credit: ricardoreitmeyer/iStock)

Although more than half the world’s countries have committed to protecting at least 30% of land and oceans by 2030 in support of biodiversity, various questions emerge: Where and what type of land should be protected? How will new land protections impact carbon emissions and climate change, or the land needed for energy and food production? As a result, many decision makers are left questioning how to take action around protecting new land as they set their sights on achieving ambitious targets to preserve biodiversity in regions around the globe. New science tools can shed light on some of those questions.

A recent study led by climate scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) aims to inform the discussion around how protecting additional land to meet conservation goals may impact land use (such as agricultural) and land cover (such as grass, water, or vegetation). The research is among the first to explore how potential pathways to achieve these bold targets affect agricultural expansion, and its findings suggest that meeting the 30% protection targets could lead to substantial regional shifts in land use and in some cases still fail to protect the world’s most biodiverse hotspots.

“It is important that we protect land if we want to stem additional ecosystem degradation,” said the paper’s lead author Alan Di Vittorio, a research scientist in Berkeley Lab’s Earth and Environmental Sciences Area. “But protecting land entails tradeoffs with other land uses and could have negative impacts on the agricultural sector, such as less land for bioenergy crops or less forest land for timber.”

Amount of currently protected forest, shrubland, and grassland as the percent of total forest, shrubland, and grassland. a) Protected land that is suitable for agriculture. b) Protected land that is unsuitable for agriculture. (Credit: Alan Di Vittorio/Berkeley Lab)

With biodiversity on the line, escalating food demands, and finite amounts of land available, the study explores the competing priorities that exist when selecting new lands for protection in order to minimize potential downsides for the agricultural sector and maximize progress toward well-defined conservation goals (such as clean water or wildlife habitat). Through a detailed analysis of a series of computer simulations, the researchers estimated the effects of approximately doubling currently protected land to meet the 30% protected land target. They incorporated new spatially explicit land availability data into their modeling to represent land that is suitable or unsuitable for agriculture; and protected, highly protected, or minimally protected. The study results indicate that detailed, region-specific land information is an important factor when selecting new lands for protection and estimating the potential impacts to agriculture of the resulting reduction in land availability.

One of the most notable findings is that the land used for growing crops for conversion into biofuels could be significantly impacted by the doubling of current protected areas. Under this scenario, the analysis showed a 10% global decrease in these bioenergy croplands to maintain food production, with that number climbing far higher in some regions (46% decrease in Russia and a 39% decrease in Canada). Some of the losses were partially offset elsewhere, such as in Northern South America where the analysis showed a 36% increase in bioenergy feedstock land.

The research also showed that for half of the 384 regions modeled, it would be possible to meet the 30% target by protecting just agriculturally unsuitable land, however this land may not coincide with one or more of the world’s 36 biodiversity hotspots. For example, the Northern Africa region could meet its 30% target by protecting only the desert, which contains few ecologically sensitive areas and thus has limited benefit to biodiversity. The study therefore illustrates that the uneven distribution of species across an area may have significant bearing when it comes to understanding and managing changes in land use, and how this impacts biodiversity.

Di Vittorio concludes, “Our study adds to the literature exploring how we can meet both environmental and human needs as countries around the world unite around the goal of protecting land for biodiversity.”

This research was supported by the U.S. Department of Energy’s Office of Science.

# # #

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 16 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

News & Events

Former Intern Emily Nagamoto Wins AGU Award1 min read

March 27, 2023

Former Science Undergraduate Laboratory Intern (SULI) Emily Nagamoto received an American Geophysical Union (AGU) Outstanding Presentation Award, which honors exceptional presentations given during AGU’s 2022 Fall meeting. She was mentored by Staff Scientist Charuleka Varadharajan and Postdoctoral Research Fellow Mohammed Ombadi during her Summer 2022 SULI term. Currently an undergraduate student in Duke University’s Nicholas…

EESA Scientists Investigate How Tropical Soil Microbes Might Respond to Future Droughts2 min read

March 14, 2023

As the most biologically diverse terrestrial ecosystems on Earth, tropical rainforests are just as critical to sustaining environmental and human systems as they are beautiful. Their unique climate with high temperatures, humidity, and precipitation promotes high primary productivity, which offsets high respiration, resulting in these ecosystems being one of the largest carbon sinks on Earth,…

Six Berkeley Lab Scientists Named AAAS Fellows6 min read

March 3, 2023

This article first appeared at lbl.gov Six researchers have been elected into the 2022 class of the American Association for the Advancement of Science The American Association for the Advancement of Science (AAAS) has announced their 2022 Fellows, including six scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This lifetime honor, which follows…

Kenichi Soga named to National Academy of Engineers1 min read

February 23, 2023

Faculty scientist Kenichi Soga was named to the National Academy of Engineering (NA), one of the highest honors that can be achieved as an American engineer. Soga is the Donald H. McLaughlin Chair in Mineral Engineering and a Chancellor’s Professor at the University of California, Berkeley, and has conducted groundbreaking research from infrastructure sensing to…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • eesawebmaster@lbl.gov
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice