Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Area-Wide Program Domain
      • Earth AI & Data
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources and Carbon Management
        • Programs
        • Carbon Removal & Mineralization Program
        • Carbon Storage Program
        • Geothermal Systems
        • Hydrocarbon Science
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
        • National Alliance for Water Innovation (NAWI)
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • Safety
    • EESA Safety
  • FoW
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

Eddy Fluxes Are Key to Quantifying How Much More Plants Photosynthesize with Increased Atmospheric CO22 min read

by Christina Procopiou on March 1, 2022

Climate and Ecosystem Sciences Division

Response of photosynthesis to per unit change in atmospheric CO2 concentration. Photosynthesis is a carbon flux term and its unit is mass of carbon per unit area per unit time. The atmospheric CO2 concentration is measured in parts per million volume.

 

Through photosynthesis, the green leaves of vegetation use the sun’s energy to capture carbon dioxide (CO2), synthesize sugars, and thus sustain life on Earth. Globally, plants have been shown to photosynthesize more with increased atmospheric levels of this heat-trapping gas. But this CO2 fertilization effect (CFE) can be hard to determine without teasing out factors like the variability of temperature and moisture, or without information about how fluxes in the exchange of carbon dioxide between land and the atmosphere change over the long term. 

For decades now through the Department of Energy-hosted measurement network that includes AmeriFlux, data has been collected at hundreds of sites globally using several-meter-tall eddy covariance towers that autonomously monitor this exchange in some of the planet’s most remote, difficult-to-access locations. Now Berkeley Lab researchers have analyzed data collected over 14 years at 68 of these sites, and are reporting the first direct observational evidence of the impact CO2 has on increasing photosynthesis in natural environments in a paper published in the journal PNAS this week. 

“We were able to show that plant production [or growth] increased over time, with the CO2 fertilization effect accounting for 44% of the [plant production] increase and atmospheric warming accounting for 28% [of the plant production increase],” said Chi Chen, the paper’s lead author and Berkeley Lab postdoc fellow, “It is exciting that our framework is able to strictly define the CFE using math and diagnose the sensitivity of plants’ regulation of carbon and water fluxes to various biological and meteorological factors.”

Applying the same analytics to global satellite observations and meteorological data, the results suggest that the CFE is more than one-third stronger than previous estimates that were based on global vegetation models and plant photosynthesis data obtained by satellite, particularly in tropical forests. According to the authors, the results suggest that the CO2 fertilization effect likely had a critical role in the global carbon cycle in recent decades. 

 

News & Events

Former Intern Emily Nagamoto Wins AGU Award1 min read

March 27, 2023

Former Science Undergraduate Laboratory Intern (SULI) Emily Nagamoto received an American Geophysical Union (AGU) Outstanding Presentation Award, which honors exceptional presentations given during AGU’s 2022 Fall meeting. She was mentored by Staff Scientist Charuleka Varadharajan and Postdoctoral Research Fellow Mohammed Ombadi during her Summer 2022 SULI term. Currently an undergraduate student in Duke University’s Nicholas…

EESA Scientists Investigate How Tropical Soil Microbes Might Respond to Future Droughts2 min read

March 14, 2023

As the most biologically diverse terrestrial ecosystems on Earth, tropical rainforests are just as critical to sustaining environmental and human systems as they are beautiful. Their unique climate with high temperatures, humidity, and precipitation promotes high primary productivity, which offsets high respiration, resulting in these ecosystems being one of the largest carbon sinks on Earth,…

Doubling Protected Lands for Biodiversity Could Require Tradeoffs With Other Land Uses, Study Finds4 min read

March 3, 2023

This article first appeared on lbl.gov. Scientists show how 30% protected land targets may not safeguard biodiversity hotspots and may negatively affect other sectors – and how data and analysis can support effective conservation and land use planning Although more than half the world’s countries have committed to protecting at least 30% of land and oceans…

Six Berkeley Lab Scientists Named AAAS Fellows6 min read

This article first appeared at lbl.gov Six researchers have been elected into the 2022 class of the American Association for the Advancement of Science The American Association for the Advancement of Science (AAAS) has announced their 2022 Fellows, including six scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This lifetime honor, which follows…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • eesawebmaster@lbl.gov
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice