Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Area-Wide Program Domain
      • Earth AI & Data
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources and Carbon Management
        • Programs
        • Carbon Removal & Mineralization Program
        • Carbon Storage Program
        • Geothermal Systems
        • Hydrocarbon Science
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
        • National Alliance for Water Innovation (NAWI)
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • Safety
    • EESA Safety
  • FoW
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

EESA Study Closes Knowledge Gaps of Drought Impacts on Microbial Activity2 min read

by Julie Bobyock on April 25, 2022

Climate and Ecosystem Sciences Division

Climate change is resulting in more frequent and intense droughts. EESA scientists investigated how this disturbance impacts microbes. [Photo Credit: Shutterstock]

Climate change is leading to an increase in many vivid impacts, such as more frequent wildfires and floods. However, there are many effects of climate change that can’t be seen from miles away – or even seen at all. The intensity and frequency of drought is predicted to increase along with higher temperatures. Droughts can impair soil health by reducing moisture and nutrients that support microbial activity, but little is known about how this disturbance will impact the soil microbes which mediate soil carbon decomposition. 

A recent publication co-authored by Nick Bouskill aimed to close this knowledge gap by linking the impacts of drought on microbial processes with rates of soil carbon cycling. The researchers conducted a literature review to identify microbial traits sensitive to changes in environmental conditions, and how changes in trait-distribution – or the way that genes are expressed in microbial communities – occur under environmental stress. 

“When we account for both the ecological and evolutionary aspects of microbial responses,” Bouskill explained, “we can better predict changes in the community and soil carbon cycling. Maybe it will come to an equilibrium.” 

The team hypothesized how carbon flux responds to different levels and rates of soil drying, and how microbes may adapt to these changes to provide environmental stabilization. The researchers demonstrate that changes in microbes’ trait distribution could have different outcomes. On the one hand, the stress could decrease soil carbon storage because microbes may elevate decomposition to satisfy energy needs disrupted by disturbance. On the other hand, the stress could increase soil carbon storage because water stress may lead to more organic material in soil as a result of increased dead soil microbes and dead plant material. 

Closing knowledge gaps of how drought may impact microbial activity and carbon storage can help the scientific community advance modeling approaches to microbiology for more accurate predictions of ecosystem response to climate change.

News & Events

Chun Chang Places Second in Annual Berkeley Lab Pitch Competition3 min read

January 18, 2023

Commercializing Berkeley Lab inventions is an important part of the Lab’s mission, and one that requires strong communication skills. For example, Lab inventors need to be able to pitch their ideas to external partners and potential funders.  The annual Berkeley Lab Pitch Competition occurred on October 27, 2022 and is a part of an entrepreneurship…

EESA Scientists Collaborate With Universities to bring Environmental Science Research Opportunities and Training to Students Underrepresented in STEM3 min read

January 13, 2023

  EESA researchers are collaborators in three of the 41 projects awarded in December by DOE through its Reaching a New Energy Sciences Workforce (RENEW) initiative.  RENEW aims to build foundations for research at institutions that have been historically underrepresented in the Office of Science (SC) research portfolio. The initiative provides opportunities for undergraduate and…

New Report Explores Revolutionary Environmental Artificial Intelligence Infrastructure5 min read

January 10, 2023

In a collaborative effort between the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) and DOE’s Advanced Scientific Computing Research (ASCR) program, as well as with community experts, the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop was held from October through December 2021. BER developed the process as the Model-Experiment paradigm, or ModEx, and a report released this fall outlines the key takeaways of last year’s event.

A Q&A With Postdoc Kunxiaoja Yuan3 min read

January 4, 2023

  Kunxiaojia Yuan received her Bachelor’s of Engineering in remote sensing and Ph.D. in geographic information engineering from Wuhan University. She is a postdoctoral researcher in EESA, with a research focus on global carbon, energy, and water cycle analysis and model evaluation using machine learning and causal inference. What motivated you to pursue a postdoc…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • eesawebmaster@lbl.gov
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice