Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Area-Wide Program Domain
      • Earth AI & Data
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources and Carbon Management
        • Programs
        • Carbon Removal & Mineralization Program
        • Carbon Storage Program
        • Geothermal Systems
        • Hydrocarbon Resource Sustainability
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
        • National Alliance for Water Innovation (NAWI)
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • Safety
    • EESA Safety
  • FoW
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

Depending Upon Soil Depth, Warming Affects Microbes Differently3 min read

by Christina Procopiou on May 21, 2021

Climate and Ecosystem Sciences Division Ecology Department

EESA researchers working under the direction of Senior Scientist Margaret Torn have been evaluating how surface and deep soil microbes have responded to increased soil temperatures for nearly five years at Blodgett Experimental Forest.

Microbiologists study how tiny soil-dwelling microbial organisms behave individually and in community in order to evaluate how climate change is affecting the extent carbon is being released from soils into the atmosphere as planet-warming carbon dioxide. 

A new paper by EESA scientists published in the journal Nature Communications describes how microbes responded to experimental soil warming in California’s Sierra Nevada region. This experiment was designed  to study whether there may be  large carbon losses from Earth’s subsurface soils under a warmer climate. EESA researchers working under the direction of  Senior Scientist Margaret Torn have been evaluating how surface and deep soil microbes have responded to increased soil temperatures for nearly five years. In this experiment, soils up to a meter in depth are heated to be 4 degrees Celsius warmer than surrounding soils while following the seasonal temperature changes. 

Although vast amounts of carbon are stored within subsurface soils deep below ground, we know very little about the microbes that mediate soil carbon decomposition, according to EESA Research Scientist Neslihan Taş.

“Microbial life beyond the first couple of centimeters of topsoils is largely unknown. Deep soils can store more carbon than currently exists in the atmosphere, and there aren’t many examples showing the impact of soil warming on microbial conversion of these carbon stocks into carbon dioxide .”  said Taş. 

Using information gathered from sequencing of environmental DNA (metagenomics and genomes) and process measurements, the team showed that deep soil microbes grow slowly but continue to release carbon dioxide when soils are warmed, and are not impacted by changes in carbon or nutrient availability. “We were surprised to find that subsoil microbes didn’t change in response to soil warming. We thought with several years of warming  subsoil microbes which  are able to thrive in very low levels of carbon and nutrients would have an advantage, but that was not the case.” said Taş. “This was partly caused by the ability of subsoil microbes to take advantage of any available resources.”

Learning how microbes will respond to higher soil temperatures beyond Earth’s surface is essential to scientists’ ability to make long-term predictions about the future of the carbon cycle in a changing climate. Soil warming studies like these at Blodgett Experimental Forest are necessary to build understanding of microbial activity in subsurface soils. Different aspects of microbial life in subsoils such as growth, mortality, and mobility continue to shape the makeup of microbes where increasing temperatures impact specific mechanisms within their cells, according to Taş.

Microbes make new cells to grow, and the term “carbon use efficiency” refers to how much of the available soil carbon can be used in the making of a new cell. Conditions resulting in high carbon-use efficiency in microbes are desired as more of the carbon remains in soil as biomass instead of decomposing to carbon dioxide. In this experiment, subsoil microbes had 20% lower carbon-use efficiencies and 47% lower growth rates compared to microbes in surface soils.  “We expected to have lower carbon-use efficiency in warmer surface soils and subsoils, but instead, we found that microbes have not (yet) changed their carbon use in response to warming,” Taş commented.

“This study shows us that the limited information we have about deep soil microbes is restricting  our view,” Taş said. “Under climate change, deep soils will continue to warm at the same pace as topsoils, and will continue to release carbon as carbon dioxide. Adjustment of deep soil microbes to a warmer climate is likely to take a long time. Without better understanding of the soil microbes at these depths we won’t have the information available to contribute to helping slow down the rate of carbon dioxide emissions.”

 

News & Events

EESA Research Scientist Selected for NAE 2022 U.S. Frontiers of Engineering Symposium2 min read

May 23, 2022

Mengsu Hu, an EESA research scientist, was selected to participate in the National Academy of Engineering (NAE) U.S. Frontiers of Engineering symposium in September. For more than 25 years, the NAE has identified the best and brightest early-career engineers from large and small companies, research universities, and government laboratories to discuss their leading-edge research and…

Microbial Response to a Changing and Fire-Prone Arctic Ecosystem2 min read

April 27, 2022

Burning more than 1,000 square kilometers of tundra on Alaska’s North Slope, the 2007 Anaktuvuk river wildfire is one of the largest fires to occur within Arctic ecosystems. Berkeley Lab scientist Nick Bouskill led a study that used data from this disturbance event to predict ecosystem recovery as fires advance in a changing climate. (Credit:…

Study Evaluates Phosphorus Availability Underground using Plant Leaves as Biosensors3 min read

April 25, 2022

When envisioning renewable energy, sources that often come to mind are the sun, wind, batteries, and water. However, biofuel, a type of renewable energy that converts organic material from plants into liquid fuel, is an important part of a global effort to achieve net-zero emissions. Switchgrass, a deep-rooted native North American grass that grows in…

EESA Multimedia Producer and Digital Strategist Niba Audrey Nirmal Awarded Ocean Science Journalism Fellowship1 min read

Niba Audrey Nirmal, EESA Multimedia Producer and Digital Strategist, has been awarded the Woods Hole Oceanographic Institute (WHOI) Ocean Science Journalism (OSJ) Fellowship.   In May, Nirmal will join nine other selected fellows on a five-day, experiential-learning based retreat at the WHOI located in Falmouth, Massachusetts to learn about ocean-science concepts ranging from marine biology to…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • eesawebmaster@lbl.gov
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice