Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Area-Wide Program Domain
      • Earth AI & Data
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources and Carbon Management
        • Programs
        • Carbon Removal & Mineralization Program
        • Carbon Storage Program
        • Geothermal Systems
        • Hydrocarbon Science
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
        • National Alliance for Water Innovation (NAWI)
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • Safety
    • EESA Safety
  • FoW
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

EESA Scientists Close Rhizosphere Microbiome Knowledge Gaps4 min read

by Julie Bobyock on July 20, 2023

Climate and Ecosystem Sciences Division Ecology Department

The EcoFAB 2.0 is a standardized device for reproducible aseptic plant growth, sampling of the growth medium, and determination of plant-microbe interactions. It can accommodate small model plants such as Brachypodium distachyon and is compatible with automated systems found in most laboratories. Researchers with the mCAFEs Science Focus Area project recently studied microbial communities at different zones of the roots in three different types of growth containers: conventional pots, tubes, and the EcoFAB.

The rhizosphere–the region of soil surrounding plant roots in which soil and microbes closely interact–plays an important role in soil carbon cycling. The rhizosphere is only about 1-2% of Earth’s soil volume but can store up to 30-40% of Earth’s total soil organic matter. Plants secrete organic compounds such as amino acids or enzymes known as root exudates, which are key in recruiting and selecting relevant beneficial microbes to colonize in the rhizosphere. Studying these microbial-plant interactions is critical to better understand the relationship between plant growth and the role soils play in keeping carbon from the atmosphere. 

A recent study led by EESA scientists published in ISME Communications investigated microbial colonization along different parts of the roots of young Brachypodium plants–a plant type used as a model for grasses that produce biomass, biofuel, and feed. The study was part of the m-CAFEs Science Focus Area project and improves what is known about key factors involved in microbial colonization in the rhizosphere.  

The team also included scientists from Berkeley Lab’s Biosciences Area, Trent Northen and Pete Andeer, and UC Berkeley researchers  Spencer Diamond and Jill Banfield, as well as  former EESA Postdocs Shwetha Acharya, Mon Oo Yee, Nameera Baig and Omolara Aladesanmi

“Our understanding of the soils and soil microbes surrounding the bottom half of a plant is limited since it’s invisible belowground,” said Staff Scientist Romy Chakraborty, who led the research effort. “Our findings help to put the pieces together of how the rhizosphere functions and interacts with the microbes that surround it–even in very young 2-week-old plants.”

The m-CAFEs researchers studied microbial communities at different zones of the roots in three different types of growth containers: conventional pots, tubes, and standardized fabricated ecosystems (EcoFABs), designed to mimic conditions of a natural environment. The goal was to characterize microbial communities on the tips of the roots, the soil at the base of the roots and regular bulk soil that was not in the rhizosphere environment. The researchers incorporated different growth container types to see if the different shapes or sizes influenced finer scale plant-microbe interactions in smaller, younger plants often used for research. 

Figure from the paper: The top tree depicts a pairwise comparison between root tip and bulk soil, middle tree between root base and bulk soil, and the bottom tree depicts the comparison between root tip and root base. The bar chart around the tree corresponds to log fold changes for each Operational Taxonomic Unit, a term used to classify groups of closely related individuals, in each of the different containers – test tube, pot or EcoFAB. An outward bar away from the tree represents a positive log fold change in the and an inward bar towards the tree represents a negative fold change in the respective OTU.

The team found that the microbes found in the bulk soil compared to the microbes in the rhizosphere were distinct from each other, indicating that microbes are recruited from bulk soil outside of the rhizosphere onto the root surface–as early as 14 days into plant growth.This is possibly due to the effect of root exudation, in which roots release substances such as amino acids and enzymes that attract more microbial communities than environments outside of the rhizosphere. 

Another key finding was that genes associated with different metabolic pathways and root colonization were more abundant in root tips than those associated with nutrient-limitations and environmental stress, implying the absence of easily available and stable carbon and nutrients in bulk soil relative to roots. The study also shows that using different growth containers with different shapes, volumes and sizes had no observed effect on the microbial composition throughout the roots. 

“The root exudates, the substances released by roots, along different parts of roots is considered an important parameter in rhizosphere dynamics, systematic and standardized studies probing this deeper are lacking especially in the early critical stages of plant growth,” said Chakraborty.

This study reveals key information on rhizosphere microbiology, which is a hotbed of carbon and nutrient transformations in all ecosystems. Closing the knowledge gap related to this environment and the microbes associated with it is essential to building our understanding of biogeochemical and carbon cycling.

News & Events

Study Sheds Light on Microbial Communities in Earth’s Subsurface2 min read

August 16, 2023

  From the tops of tree canopies to the bottom of groundwater reservoirs, a vast amount of living organisms interact with nonliving components such as rock, water, and soil to shape this area of Earth known as the “critical zone.” Over half of Earth’s microbes are located in the subsurface critical zone, which ranges from…

Carl Steefel Honored in Goldschmidt Session on Reactive Transport2 min read

August 2, 2023

The contributions of Carl Steefel to the reactive transport modeling scientific community were recognized in a session held in his honor at the recent Goldschmidt 2023 conference (Lyon, France). Goldschmidt is the foremost annual, international conference on geochemistry and related subjects, organized by the European Association of Geochemistry and the Geochemical Society. The session was…

DOE Funds Projects to Advance Forest Carbon Dioxide Removal Efforts and Agricultural Soil Carbon Conservation4 min read

August 1, 2023

The DOE Office of Fossil Energy and Carbon Management (FECM) and Office of Technology Transitions (OTT) recently announced $5 million in funding for four projects–two from Berkeley Lab with EESA leadership. The projects selected offer “promising solutions” to the nation’s climate change challenges by helping to reduce greenhouse gas emissions and will “accelerate their deployment…

Quantifying the strength of the land carbon sink3 min read

July 26, 2023

This article first appeared at nature.berkeley.edu/news. The world’s forests, grasslands, and other terrestrial ecosystems have played a substantial role in offsetting human carbon emissions—a capability that UC Berkeley researchers say would be threatened by continued global change. The assessment, published today as a new review paper in Nature Reviews Earth & Environment, presents a comprehensive analysis of…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • eesawebmaster@lbl.gov
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice