Earth and Environmental Sciences Area Logo Earth and Environmental Sciences Area Logo
Lawrence Berkeley National Laboratory Logo
Menu
  • About Us
    • Contact Us
    • Organizational Charts
    • Virtual Tours
    • EESA Strategic Vision
  • Our People
    • A-Z People
    • Alumni Network
    • Area Offices
    • Committees
    • Directors
    • IDEA Working Group
    • Paul A. Witherspoon
    • Postdocs & Early Careers
    • Search by Expertise
  • Careers & Opportunities
    • Careers
    • Intern Pilot w/CSUEB
    • Mentorship Program
    • Recognition & Funding Opps
    • EESA Mini Grants
    • S&E Metrics for Performance and Promotion
    • Student Opportunities
    • Supervisor EnRichment (SupER) Program
    • Promotion Metrics (Scientific)
  • Research
    • Area-Wide Program Domain
      • Earth AI & Data
    • Our Divisions
    • Climate & Ecosystem Sciences Division
      • Environmental & Biological Systems Science
        • Programs
        • Environmental Remediation & Water Resources
        • Ecosystems Biology Program
        • Bioenergy
      • Biosphere-Atmosphere Interactions
        • Programs
        • Climate Modeling
        • Atmospheric System Research
        • Terrestrial Ecosystem Science
      • Climate & Atmosphere Processes
        • Programs
        • Climate Modeling
        • Atmospheric System Research
      • Earth Systems & Society
        • Programs
        • Climate Modeling
    • Energy Geosciences Division
      • Discovery Geosciences
        • Programs
        • Basic Energy Sciences (BES) Geophysics
        • Basic Energy Sciences (BES) Geochemistry
        • Basic Energy Sciences (BES) Isotope
      • Energy Resources and Carbon Management
        • Programs
        • Carbon Removal & Mineralization Program
        • Carbon Storage Program
        • Geothermal Systems
        • Hydrocarbon Science
        • Nuclear Energy & Waste
      • Resilient Energy, Water & Infrastructure
        • Programs
        • Water-Energy
        • Critical Infrastructure
        • Environmental Resilience
        • Grid-Scale Subsurface Energy Storage
        • National Alliance for Water Innovation (NAWI)
    • Projects
    • Research at a Glance
    • Publication Lists
    • Centers and Resources
    • Technologies & National User Programs
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
    • Operations
  • News & Events
    • News
    • Events
    • Earth & Environment Newsletter
  • Intranet
  • Safety
    • EESA Safety
  • FoW
  • Search

  • all
  • people
  • events
  • posts
  • pages
  • projects
  • publications

EESA Scientists Investigate How Tropical Soil Microbes Might Respond to Future Droughts2 min read

by Julie Bobyock on March 14, 2023

Climate and Ecosystem Sciences Division

Panama tropical rainforest. Credit: Shutterstock

As the most biologically diverse terrestrial ecosystems on Earth, tropical rainforests are just as critical to sustaining environmental and human systems as they are beautiful. Their unique climate with high temperatures, humidity, and precipitation promotes high primary productivity, which offsets high respiration, resulting in these ecosystems being one of the largest carbon sinks on Earth, storing about 25% of all terrestrial carbon on the planet. 

However, climate experts have demonstrated that tropical forests are experiencing disturbances to their  hydrological cycle in the form of longer drought periods and more intense precipitation, which research shows can impact soil nutrient cycling and may decrease soil carbon storage as a result. Now a research team led by EESA scientists Stephany Chacon and Nicholas Bouskill conducted a study published in Soil Biology and Biogeochemistry to investigate how soil drying impacts soil microbial communities, which largely govern soil carbon storage through their ability to decompose soil organic matter (carbon). Their findings suggest that how soil microbes respond to drought is dependent on a given region’s climate history and soil fertility.

“The emergence of microbial traits, which dictate resilience to disturbance, is dependent upon long-term exposure to stress,” Bouskill explained, “and we might expect that drier regions are more resilient to soil drying. This is basically what we saw, but also noted that nutrient availability also imparted strong resistance to stress.”

An area’s climate history, which can influence a microbial community’s traits and functions, can impact how soil microbes respond to environmental disturbance such as wildfire or flooding. The researchers studied how changing precipitation levels among four sites with varying climate histories and soil fertility impacted the evolutionary development and community composition of tropical soil microbes throughout Panama over the course of 18 months. To simulate drought conditions, they used plastic shelters to prevent precipitation from directly entering the soils. 

Location of field sites across with varying mean annual precipitation and fertility in Panama.

The team found that a “drought microbiome” developed in less fertile soils across different sites receiving a lower average annual precipitation, showing more similarities in composition and structure towards one another despite being from different locations. As the team reduced precipitation, they found that, in sites with higher average annual precipitation, microbial community makeup changed to resemble communities from areas with a history of receiving lower precipitation. 

These findings demonstrate that, as climate changes and drought occurs in tropical forests, microbial communities’ response to drying soils might be influenced by climate history and soil fertility. Since microbial communities are sensitive to change on even the smallest of scales, understanding how they will respond to larger changes like drought is essential to predicting their activity and in turn soil carbon storage in a changing climate. 

 

News & Events

Former Intern Emily Nagamoto Wins AGU Award1 min read

March 27, 2023

Former Science Undergraduate Laboratory Intern (SULI) Emily Nagamoto received an American Geophysical Union (AGU) Outstanding Presentation Award, which honors exceptional presentations given during AGU’s 2022 Fall meeting. She was mentored by Staff Scientist Charuleka Varadharajan and Postdoctoral Research Fellow Mohammed Ombadi during her Summer 2022 SULI term. Currently an undergraduate student in Duke University’s Nicholas…

Doubling Protected Lands for Biodiversity Could Require Tradeoffs With Other Land Uses, Study Finds4 min read

March 3, 2023

This article first appeared on lbl.gov. Scientists show how 30% protected land targets may not safeguard biodiversity hotspots and may negatively affect other sectors – and how data and analysis can support effective conservation and land use planning Although more than half the world’s countries have committed to protecting at least 30% of land and oceans…

Six Berkeley Lab Scientists Named AAAS Fellows6 min read

This article first appeared at lbl.gov Six researchers have been elected into the 2022 class of the American Association for the Advancement of Science The American Association for the Advancement of Science (AAAS) has announced their 2022 Fellows, including six scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This lifetime honor, which follows…

Kenichi Soga named to National Academy of Engineers1 min read

February 23, 2023

Faculty scientist Kenichi Soga was named to the National Academy of Engineering (NA), one of the highest honors that can be achieved as an American engineer. Soga is the Donald H. McLaughlin Chair in Mineral Engineering and a Chancellor’s Professor at the University of California, Berkeley, and has conducted groundbreaking research from infrastructure sensing to…

  • Our People
    • Area Offices
    • Committees
    • Directors
    • Organizational Charts
    • Postdocs
    • Staff Only
    • Search by Expertise
  • Departments
    • Climate Sciences
    • Ecology
    • Geochemistry
    • Geophysics
    • Hydrogeology
  • Research
    • Climate & Ecosystem Sciences Division
    • Energy Geosciences Division
    • Program Domains
      • Programs
    • Projects
  • Contact
    • 510 486 6455
    • eesawebmaster@lbl.gov
    • Our Identity

Earth and Environmental Sciences Area Logo DOE Earth and Environmental Sciences Area Logo UC

A U.S. Department of Energy National Laboratory Managed by the University of California

Lawrence Berkeley National Laboratory · Earth and Environmental Sciences Area · Privacy & Security Notice